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The removal of noise and outliers from health signals is an important problem in jet
engine health monitoring. Typically, health signals are time series of damage indicators,
which can be sensor measurements or features derived from such measurements. Sharp
or sudden changes in health signals can represent abrupt faults and long term deterio-
ration in the system is typical of gradual faults. Simple linear filters tend to smooth out
the sharp trend shifts in jet engine signals and are also not good for outlier removal. We
propose new optimally designed nonlinear weighted recursive median filters for noise
removal from typical health signals of jet engines. Signals for abrupt and gradual faults
and with transient data are considered. Numerical results are obtained for a jet engine
and show that preprocessing of health signals using the proposed filter significantly
removes Gaussian noise and outliers and could therefore greatly improve the accuracy of
diagnostic systems. �DOI: 10.1115/1.3200907�
Introduction

Health monitoring is a crucial factor in the working and main-
enance of jet engines. Due to the harsh environment of their
peration and rapidly rotating blades, engines are vulnerable to
aults. In order to detect and supervise engine deterioration and
aults, certain measurement deviations or deltas are used. To ob-
ain these values, a “good” baseline engine, obtained from a math-
matical model, is taken as a reference. Measurements of the
faulty” engine, indicating its condition or health, are obtained
rom sensors that are strategically placed within the jet engine.
ny significant departure from the reference represents the occur-

ence of a fault. Four typical measurements used in engine health
onitoring are exhaust gas temperature �EGT�, low rotor speed

N1�, high rotor speed �N1�, and fuel flow �WF�. These four mea-
urements lead to four measurement deviations or deltas ��EGT,
N1, �N2, and �WF�. For these gas path measurements, the

hrust setting is at the engine pressure ratio. Regular observation
f these health signals is vital for the proper functioning of jet
ngines, since appropriate fault detection can lead to timely cor-
ective measures. However, due to various factors, such as mea-
urement errors and corrupted communication channels, these del-
as are often contaminated by noise. For an accurate analysis of
he engine’s condition, removal of this noise is essential.

Several methods have been proposed to detect faults from an
nalysis of jet engine health signals. These include the use Kal-
an filter �1–3�, expert systems �4�, neural network �4,5�, fuzzy

ogic �6�, and probabilistic �7–9� approaches. Comparative studies
or neural networks and Kalman filters were also done �10�. Se-
ected studies have addressed the issue of noise removal from
ignals. DePold and Gass �4� demonstrated the advantages of the
xponential average filter, including its faster reaction time to any
hanges in the measurement signal. The exponential average filter
s a simple infinite impulse response �IIR� filter. Typically, the

oving average filter is used for denoising gas turbine signals
11�. The moving average filter is a simple finite impulse response
FIR� filter, which is not able to handle rapid changes in the sig-
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nal. Details about both the FIR and IIR filters and their limitations
for gas turbine health signal denoising are discussed in Ref. �11�.

Such rapid changes in the measurement signal are often a pre-
cursor of a so-called single fault event �10�. Such sudden shifts in
signals are typical of abrupt faults and the detection of such faults
has been studied by selected researchers for various mechanical
systems. For example, Katipamula and Brambley �12� reviewed
several works on abrupt faults occurring in building systems.
Abrupt changes in strains as an indicator of damage in composite
structures were analyzed by Koh et al. �13�. Long term deteriora-
tion is typically manifested in a slow change in the measurement
signal, which can be well modeled as a linear change. Yen and
DeLima �14� studied the fault detection of abrupt and gradual �or
incipient� faults in physical plants. In general, health signals com-
prise mainly of abrupt faults and gradual faults and therefore a
general denoising algorithm for such signals should address both
the faults simultaneously.

Linear filters such as the FIR and the exponential average can
distort the sharp changes in signals and they are also weak at
outlier removal �15�. The use of median filters for removal of
outliers while preserving sharp trend shifts in signals, which may
indicate a fault was used by several researchers. Yeh et al. �16�
used median filters for denoising electrocardiography signals,
which indicate the heart health of patients. Blanes et al. �17� used
median filters for denoising heart rate variability signals. Lee �18�
used median filters for filtering measured strain and displacement
patterns for improved health monitoring of composite structures.
Mba �19� used a median filter for denoising acoustic emission
signals for improved bearing health monitoring. One advantage of
median type filters is that they remove outliers in signals. Outliers
are manifestations of non-Gaussian noise, which can occur in
health monitoring systems but is often ignored in the literature.
For example, Yoshida �20� pointed out that non-Gaussian noise
occurs in health signals because damage tends to be concentrated
in a specific part of the structure. He used a Monte Carlo filter to
address the issue of non-Gaussian noise in structural damage de-
tection for structures following earthquakes. However, the com-
puter time requirements for such a filtering method can be very
large.

We see that median filters can be used to preprocess health

signals before subjecting them to fault detection and isolation al-
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orithms. There is a possibility of significantly enhancing the me-
ian filters for health monitoring preprocessing applications. Pro-
ressive improvements in advancing median type algorithms were
ade over the past decade. Ganguli �15� demonstrated FIR me-

ian hybrid �FMH� filters for removing noise from gas turbine
easurements while preserving trend shifts. In other works, the

se of recursive median �RM� filters �21,22� was put forward and
t was found that such filters have excellent noise removal prop-
rties.

Several works have addressed denoising preprocessors for bet-
er condition monitoring of mechanical systems using other meth-
ds. Jafarizadeh et al. �23� pointed out that vibration signals from
ystems such as gearboxes are noisy and time averaging methods
an be used for denoising such signals. They point out that the
ignal-to-noise ratio �SNR� of such signals is very low and feature
xtraction of signal components is very difficult. They propose a
ew noise cancelling method based on time averaging the asyn-
hronous input and use a Morlet wavelet for feature extraction.
u and Li �24� pointed out that oil monitoring is applied exten-

ively for condition monitoring. However, extraction of features
rom oil data has always been a problem because of noise con-
amination. They used a 1D discrete wavelet transform for denois-
ng oil spectrometric data. Abbasion et al. �25� also used wavelet
enoising for improving fault classification in roller bearings.
eng and Chu �26� provide a comprehensive review on applica-

ion of wavelets in condition monitoring and point out their use
or denoising signals. Roy and Ganguli �27� compared wavelets
ith recursive median filters for denoising frequency time series

or improved operational health monitoring. They found that
hile wavelets provide greater levels of noise reduction, recursive
edian filters provide good results while being much simpler to

evelop and implement. Moreover, the nonlinear nature of the
edian type filters makes them useful for the removal of outliers

28,29�
Figure 1 shows a schematic of a health monitoring system. We

ddress the noise removal function in this paper. Noise removal
nhances both the automated and human driven actions for health
onitoring. In this paper, the weighted recursive median �WRM�
lter is introduced for health monitoring applications. The concept
f determining the optimal weights for different types of health
ignals is explored. A comprehensive study of this filter structure
hows superior performance compared with the currently used
lters. The optimally weighted recursive median filters are tools,
hich can be of great use for denoising of signals before perform-

ng fault detection and isolation functions. The aim of the current
ork is to develop filters for improved jet engine health monitor-

ng.

1.1 Median Filter. The median filter is a nonlinear digital
ltering technique, often used to remove noise from signals. The

dea is to examine a sample of the input and decide if it is repre-
entative of the signal. This is performed using a window consist-
ng of an odd number of samples. The values in the window are
orted into numerical order and the median value, the sample in
he center of the window, is selected as the output. An N-point
edian filter takes N points surrounding the central point and

ives their median as the output, i.e., if xk represents the input

Fig. 1 Schematic representation of health monitoring system
ignal, then the output of the median filter �24� is

41601-2 / Vol. 132, APRIL 2010

aded 02 Jun 2010 to 171.66.16.96. Redistribution subject to ASME
yk = median�xk−n,xk−n+1, . . . ,xk, . . . ,xk+n−1,xk+n� �1�

Here, N=2n+1 is the window length of the filter. These filters can
be effectively implemented for removing non-Gaussian noise,
such as outliers, while preserving sharp edges in signals. How-
ever, they are not good at removing Gaussian noise. Furthermore,
a very large number of iterations can be needed by the median
filter to converge. This is because repeated applications of the
simple median �SM� filter are needed to remove noise from the
data. Moreover, the median filter is noncausal and therefore intro-
duces a time delay in the case of online processing of data ob-
tained from the jet engines.

1.2 RM Filters. A recursive median filter is an advance over
the standard median filter. It uses some previous output values for
arriving at the next output �25�. This can be expressed as

yk = median�yk−n,yk−n+1, . . . ,xk, . . . ,xk+n−1,xk+n� �2�

where N=2n+1 is the window length of the filter. RM filters
provide better immunity to outliers in the data than median filters.
Moreover, much lesser iterations are required by these filters to
converge. However, RM filters do have certain disadvantages,
which limit their efficiency. These filters can introduce blurring
effects and can cause “streaking,” which is the introduction of
steplike artifacts in the filtered signal.

1.3 WRM Filters. The performance of the recursive median
filter can be greatly improved by the use of weights. These allow
the filter to be tuned to particular types of signals and to reduce
the blurring and streaking effects that are observed in the recur-
sive median filter. Moreover, recasting the RM filter in this form
provides faster implementation. The weighted recursive median
filter �21� can be represented as

yk = median�wk−n � yk−n,wk−n+1 � yk−n+1, . . . ,wk � xk, . . . ,

wk+n−1 � xk+n−1,wk+n � xk+n� �3�

Here � stands for duplication and w are the integer weights. Du-
plication implies that the data point is repeated. For example, yk
=median�2 �yk−1 ,3 �xk ,xk+1� is the same as yk

=median�yk−1 ,yk−1 ,xk ,xk ,xk ,xk+1�. WRM filters can be of two
types based on the weights used: �1� weighted symmetric recur-
sive median filters and �2� weighted asymmetric recursive median
filters.

Symmetrically, weighted filters are structures in which the
weights are chosen to be symmetric, i.e., wn−i=wn+i �22�. How-
ever, in the nonsymmetric structure, the weight values do not fol-
low any particular pattern. Nonsymmetric filters may have advan-
tages over symmetric filters but have not been explored to the best
of our knowledge. Signal processing literature proposed adaptive
approaches to weighting these filters based on mathematical meth-
ods �21�. Such approaches are quite complicated and require a
mathematical model of the system.

The primary focus of this paper is to explore the possibilities
provided by the weighted filters for noise reduction in health sig-
nals. We find the weights which offer the best denoising perfor-
mance for typical health signals using an optimization approach.

2 Test Signals
A typical jet engine consists of five modules: fan �FAN�, low

pressure compressor �LPC�, high pressure compressor �HPC�, low
pressure turbine �LPT�, and high pressure turbine �HPT�, shown
schematically in Fig. 2. Air coming into the engine is compressed
in the FAN, LPC, and HPC modules combusted in the burner and
then expanded through the HPT and LPT modules producing
power. The sensors N1, N2, WF, and EGT provide information
about the condition of these modules and are used for health

monitoring. In this study, to test the filters, an ideal root signal
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EGT with implanted HPC and/or HPT faults is used. The other
oot signals for �N1, �N2, and �WF can be similarly derived
rom the engine model �11�.

Consider the basic measurement deltas �EGT, �N1, �N2, and
WF. In all practical applications, a certain level of noise is al-
ays present in the measured signal. As a result, these measure-
ent deltas can be expressed as

z = z0 + � �4�

here � represents the noise, z0 is the pure measurement delta,
lso called the root signal, and z is the noisy or corrupted signal.
ence, a filter � is required to remove the noise and return the
ltered signal for proper damage detection.

ẑ = ��z� = ��z0 + �� �5�
or a comprehensive study of the role of weighted recursive me-
ian filters in eliminating noise from jet engine measurements,
our different signals are considered. The following signals form
he basic representation of the most common types of health sig-
als:

1. step signal �indicating an abrupt fault�
2. ramp signal �indicating a gradual fault�
3. combination signal �comprising both abrupt and gradual

faults�
4. transient gas path signal �obtained from Ref. �30��

While the first three signals simulate steady state gas path mea-
urements, the transient type signal can sometime provide infor-
ation about the engine, which is not true in steady state signals.
ach of the first three signals comprises 200 data points. The root
ignal in Fig. 3 depicts a step signal and it represents a “single
ault,” which may be triggered by an event such as foreign object
amage. Data point k=60 represents the onset of this fault. The
amage caused is identified as a 2% fall in HPC efficiency and the
PC module is repaired at point k=140. In Fig. 4, the develop-
ent of the HPT fault is illustrated by use of the ramp signal. This

ig. 2 Schematic representation of jet engine and four basic
easurements
Fig. 3 Step signal representing a HPC fault and its repair

ournal of Engineering for Gas Turbines and Power
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fault differs from the HPC one in that it does not occur suddenly
and it develops due to engine deterioration. Again, the maximum
value of EGT here corresponds to a 2% fall in HPT efficiency.
Here, the growth is gradual �approximated by a linear function�
from points k=40–116. From k=116 the HPT fault remains
steady and is finally repaired at k=140. The step and ramp signals
represent the two types of faults considered individually. Now,
Fig. 5 shows a combination signal, wherein, both types of faults
may occur one after the other. This is a more practical case since
any jet engine is susceptible to both these faults. Figure 6 repre-
sents a transient signal of a deteriorated engine with a single com-
ponent fault in the intermediate pressure compressor �IPC� im-
planted. This signal is obtained from Ref. �30� and is also used in
Ref. �31�.

In the ideal scenario, the measurement delta is clearly defined at
each point. However, to efficiently test the performance of the
filters, these signals have been subjected to certain noise levels by

Fig. 4 Ramp signal representing a HPT fault and its repair

Fig. 5 Combination signal „step and ramp… representing a
HPC fault and its repair followed by a HPT fault and its repair

Fig. 6 Transient gas path signal representing IPC fault and

transient data

APRIL 2010, Vol. 132 / 041601-3
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sing additive white Gaussian noise with varying SNR. Hence,
he performance of weighted recursive median filters is studied for
igh noise �SNR=0.1�, medium noise �SNR=0.3�, and low noise
SNR=1.5� signals.

Numerical Analysis
The weighted RM filter is first compared with the FIR, IIR, and

imple median filter, and then to the traditional or unweighted RM
lter. The recursive median filter used in this study is a five-point
lter with no weights and the weighted recursive median filters
sed here have been discussed earlier in Eq. �3�. To obtain a
uantitative idea of the noise reduction, we look at two types of
rror criteria. The rms error is a measure of the difference between
he filtered and the ideal signal. This is given as

rms =� 1

N�
i=1

N

��ẑi − �zi
0�2 �6�

ere, N is the number of data points in the sample. The minimum
bsolute error �MAE�, which is more sensitive to outliers, is also
sed to test the filters �21�. We will add outliers to the test signals
ater in the paper. In the MAE criterion, the error is defined as

MAE = �
i=1

N
1

N
��ẑi − �zi

0� �7�

ables 1 and 2 summarize the results obtained on passing the test
ignals through the different filters for the mean rms and MAE

able 1 Mean rms error estimates of five-point filters on test
ignals

ignal type SNR value SM RM WRM

tep 0.1 0.5441 0.4678 0.3806
0.3 0.5327 0.4532 0.3731
1.5 0.4620 0.3974 0.3242

amp 0.1 0.5602 0.5594 0.4554
0.3 0.5581 0.5475 0.4481
1.5 0.4989 0.4889 0.3990

ombination 0.1 0.5971 0.5940 0.4911
0.3 0.5848 0.5738 0.4826
1.5 0.5290 0.5134 0.4099

ransient signal 0.1 0.5287 0.4352 0.3446
0.3 0.5187 0.4243 0.3376
1.5 0.4509 0.3764 0.2944

able 2 Mean MAE estimates of five-point filters on test
ignals

ignal type SNR value SM filter RM filter WRM filter

tep 0.1 0.4277 0.3576 0.2872
0.3 0.4190 0.3459 0.2806
1.5 0.3638 0.3031 0.2428

amp 0.1 0.4460 0.4311 0.3506
0.3 0.4268 0.4210 0.3444
1.5 0.3856 0.3739 0.3054

ombination 0.1 0.4660 0.4560 0.3790
0.3 0.4503 0.4403 0.3728
1.5 0.3999 0.3930 0.3300

ransient signal 0.1 0.4227 0.3454 0.2736
0.3 0.4156 0.3373 0.2664
1.5 0.3608 0.2982 0.2328
41601-4 / Vol. 132, APRIL 2010
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estimates, respectively. Since random noise is added to the sig-
nals, each noisy signal is different and a large number of such
signals should be filtered to arrive at an accurate estimate of the
noise reduction given by the filter. Therefore, we use thousand
samples of noisy data to arrive at the mean rms and MAE values.
We see that the RM filter performs better than the SM filter for all
cases. The weighted median filter is discussed next.

We now consider the five-point weighted median filter defined
as

yk = median�w−2 � yk−2,w−1 � yk−1,w0 � xk,w1 � xk+1,w2 � xk+2�
�8�

The filter has five integer weights. The five-point filter keeps the
time delay to only two points since xk+1 and xk+2 is needed by the
filter. For many engines, the data are available at a few points
during each flight. Therefore, the low filter length keeps the time
delay to a minimum while providing sufficient filter length for
noise removal, say in comparison to a three-point filter. If data are
available more rapidly, longer length filters can be considered.

To obtain the optimal weights we solve the following optimi-
zation problem, minimize

f�w−2,w−1,w0,w1,w2� =

�
i=1

M

rms

M
�9�

Here, M =1000 samples of noisy data are used to obtain a mean
rms error and the weights are design variables of the filter, which
need to be determined for minimum error. For applications with
the weighted filter, all combinations of design variables or weights
are computed using integer values �1, 2, 3, and 4	. We found that
using higher weights yield the same filter as lower weights be-
cause of duplication in the median operation. For example, the
weights �4, 1, 3, 2, and 4� give the same result as the weights �8,
2, 6, 4, and 8� in terms of median value. However, the lower
weight set is more efficient. Through exhaustive numerical search
of the design space, it is observed that several groups of weights
could be used to reduce the mean rms error to below that pro-
duced by the standard recursive median filter. For computer
implementation, the weighted recursive median filter is placed
inside a loop of 1000 iterations to obtain the average reduction in
noise for a given weight set. This loop in then placed inside a
nested loop of depth five, which vary the weights from 1 to 4 in
intervals of 1. Thus, the noise removal in terms of rms error for all
the integer weights is obtained and the weights corresponding to
the minimum values of rms error are selected. Although other
optimization approaches such as integer programming or genetic
algorithms could be used to generate weights, the exhaustive
search guarantees that the best weight set �global minimum� is
found.

A similar exercise is performed using the MAE criteria with the
objective function, minimize

f�w−2,w−1,w0,w1,w2� =

�
i=1

M

MAE

M
�10�

Here, M =1000 samples of noisy data are used to obtain a mean
MAE and the weights are design variables of the filter, which need
to be determined for minimum error. The optimum set of weights
is arrived at by determining the lowest rms and MAE error value
that could be achieved for each signal. These optimum weights are
shown in Table 3 for the rms error and the MAE error. The same
set of weights gives both the lowest rms and MAE errors in these
cases. The WRM filter results in Table 1 and 2 correspond to the
optimal weights in Table 3. We see that the WRM filter shows a
significant improvement in noise removal compared with the other

filters.
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An interesting observation is the lack of one universal sequence
f weights that minimizes the error. This implies that there exists
n exclusive group of weights for each signal, which can com-
letely minimize errors. Most general steady state signals will be
imilar to the combination signal and therefore the weight set �2,
, 2, 1, 3� can be used for such signals. On the other hand, the
eights �4, 1, 2, 3, 4� can be used for the transient signals. Physi-

ally, the weights mean that certain samples in the signal are given
ore importance than others. The weights are sensitive to the

ignal type rather than to noise levels.
Figures 7–10 visually represent the effects of the weighted re-

ursive median filter on the test signals with SNR of 1.5. These

able 3 Optimal weights for five-point WRM filter using both
ms and MAE criteria

ignal type SNR value Weights

tep 0.1 �4,1,3,2,4�
0.3 �4,1,3,2,4�
1.5 �4,1,3,2,4�

amp 0.1 �2,1,2,1,2�
0.3 �2,1,2,1,2�
1.5 �2,1,2,1,2�

ombination 0.1 �2,2,2,1,3�
0.3 �2,2,2,1,3�
1.5 �2,2,2,1,3�

ransient signal 0.1 �4,1,3,2,4�
0.3 �4,1,3,2,4�
1.5 �4,1,3,2,4�

ig. 7 Effect of weighted RM filters on noisy step signal with
NR=1.5

ig. 8 Effect of weighted RM filters on noisy ramp signal with

NR=1.5

ournal of Engineering for Gas Turbines and Power
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figures clearly illustrate the capability of the weighted RM filters
to preserve sharp edges or trend shifts in a signal and to remove
noise from stationary regions.

4 Test Signal With Outliers
The signal in Fig. 11 considers the combination signal with

added noise �SNR=1.5� and outliers. Outliers represent the impul-
sive noise that may be present in a signal. Here, the outliers are
selected at three different levels. The first is equal to 4.23 C and is
added at k=10, 80, and 140 and subtracted at k=40 and 120. The
8.46 C outlier is added at k=20, 100, and 190 and subtracted at
k=30 and 170. The last outlier has a value of 12.69 C and this is
added at k=110 and 160 and subtracted at k=60 and 130. Simi-
larly, outliers are added to the step, ramp, and transient signals.
The weights obtained after putting in the outliers are the same as

Fig. 9 Effect of weighted RM filters on noisy combination sig-
nal with SNR=1.5

Fig. 10 Effect of weighted RM filters on noisy realistic signal
with SNR=1.5

Fig. 11 Effect of weighted RM filters on noisy combination sig-

nal with outliers

APRIL 2010, Vol. 132 / 041601-5
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hown in Table 3. This is primarily because all median architec-
ures are good at removing outliers and the weights serve to ad-
ress the ideal signal characteristics.

The weighted recursive median filter is able to efficiently dis-
ard these outliers while preserving signal features, which can be
asily observed from Figs. 11–14. On the contrary, results in
ables 4 and 5 show that the simple median and RM filters do not
rovide the same degree of immunity to noise and outliers. This
uperior performance of the weighted filter makes it highly suit-
ble for denoising of engine health signals, where the features of
he original signal are critical to engine maintenance.

ig. 12 Effect of weighted RM filters on noisy step signal with
utliers

ig. 13 Effect of weighted RM filters on noisy ramp signal with
utliers

ig. 14 Effect of weighted RM filters on noisy realistic signal

ith outliers

41601-6 / Vol. 132, APRIL 2010
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5 Performance Comparison
This section summarizes the filter performance of the structures

used in this study. To get a statistical measure of the effectiveness
of each method, 1000 samples of noisy data are generated and
filtered as discussed previously. Using the MAE definition, as
given in Eq. �7�, we can define a parameter for efficiency mea-
surement of these filters in terms of noise reduction as

� =
MAE�noisy� − MAE�filtered�

MAE�noisy� 100 �11�

Table 6 clearly illustrates this improvement by comparing the per-
formance of the three filters studied in this work. We observe that
the simple median filter provides a noise reduction of only 39–
46%; the traditional recursive structure brings about a reduction of
41–56%, while the weighted structure improves this considerably
to values ranging from 51% to 65%. This leads to significant
accuracy in obtaining the root signal from the contaminated one.

In order to clearly observe the superiority of the weighted filter,
we use another parameter �, which is defined as

��SM� =
MAE�SM� − MAE�WRMF�

MAE�SM� 100 �12�

��RMF� =
MAE�RMF� − MAE�WRMF�

MAE�RMF� 100 �13�

Table 7 summarizes the improvement provided by the weighted
filters over the simple median and recursive median filters. It is

Table 4 rms error of different filters on test signal containing
outliers

Signal type SNR value SM filter RM filter WRM filter

Step 0.1 0.5632 0.4819 0.3977
0.3 0.5523 0.4750 0.3866
1.5 0.4788 0.4133 0.3424

Ramp 0.1 0.6016 0.5730 0.4922
0.3 0.5900 0.5646 0.4795
1.5 0.5272 0.4961 0.4311

Combination 0.1 0.6332 0.6113 0.5291
0.3 0.6238 0.5994 0.5183
1.5 0.5500 0.5249 0.4632

Transient signal 0.1 0.5292 0.4372 0.3392
0.3 0.5182 0.4281 0.3362
1.5 0.4502 0.3752 0.2968

Table 5 MAE estimate of different filters on test signal con-
taining outliers

Signal type SNR value SM filter RM filter WRM filter

Step 0.1 0.4422 0.3666 0.2998
0.3 0.4346 0.3618 0.2918
1.5 0.3761 0.3156 0.2570

Ramp 0.1 0.4594 0.4511 0.3754
0.3 0.4495 0.4439 0.3667
1.5 0.3996 0.3897 0.3275

Combination 0.1 0.4850 0.4791 0.4102
0.3 0.4774 0.4692 0.4011
1.5 0.4200 0.4112 0.3576

Transient signal 0.1 0.4249 0.3466 0.2705
0.3 0.4155 0.3397 0.2671
1.5 0.3610 0.2967 0.2354
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Downlo
een that weighted RM filters improve the effectiveness of the
edian filters by a maximum of 36% and of the unweighted RM
lters by 22%. These results prove the earlier findings that the
eighted filter provides several advantages over the standard fil-

ers in terms of feature preservation and noise reduction. Note that
hese advantages are provided by a numerically efficient filter,
hich is very easy to implement. For the numerical results in this

tudy, the filters were implemented in MATLAB. The results of this
aper clearly show that optimization can lead to a better filter for
ealth monitoring systems with negligible increase in complexity
nd cost.

Tables 8 and 9 show the improvements in performance of the
eighted filter over the other filters for signals that are contami-
ated with Gaussian noise as well as non-Gaussian outliers. From
able 8, we can see that the simple median filter reduces noise by
bout 46–65%, the recursive median filter by about 56–66%, and
he WRM filter by about 65–70%.

For a signal with many outliers, all median type filters work
ell as they are ideal for outlier removal. Also, the outliers affect

he error norms to a much greater extent compared with Gaussian
oise. Even then, we see that the WRM filter works well even in
he presence of outliers, as can be seen from Table 9.

We have shown that optimally weighted recursive median ar-
hitectures are a powerful tool for improved as turbine health
onitoring. However, there are several aspects about the practical

mplementation of this method, which can be addressed in future

able 6 Percentage noise reduction provided by different fil-
ers for test signals

ignal type SNR value
��median�

�%�
��RMF�

�%�
��weighted RMF�

�%�

tep 0.1 45.63 54.54 63.49
0.3 45.54 55.04 63.53
1.5 45.84 54.90 63.87

amp 0.1 43.34 45.23 55.46
0.3 44.73 45.48 55.40
1.5 42.64 44.38 54.57

ombination 0.1 40.93 42.20 51.96
0.3 41.53 42.80 51.62
1.5 39.06 41.57 50.94

eal signal 0.1 46.55 56.32 65.40
0.3 46.03 56.20 65.41
1.5 46.18 55.52 65.27

able 7 Improvement in performance of weighted RM filters
ver other filters

ignal type SNR value
��SM�

�%�
��RMF�

�%�

tep 0.1 32.85 19.69
0.3 33.03 18.88
1.5 33.26 19.89

amp 0.1 21.39 18.67
0.3 19.31 18.19
1.5 20.80 18.32

ombination 0.1 18.67 16.89
0.3 17.26 15.38
1.5 19.49 16.03

ransient signal 0.1 35.27 20.29
0.3 35.90 21.02
1.5 35.48 21.93
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research. An adaptive approach to weight generation based on
incoming online data can be explored. Other types of faults with
different magnitudes �both bias and slope� should be evaluated.
Besides the abrupt faults and gradual faults considered in this
work, other faults such as intermittent faults and increase in noise
caused by faults are also possible and need to be addressed. We
also note that the current approach can be used as a complement
and preprocessor to other gas path denoising approaches proposed
in literature, which are often tuned to Gaussian noise �32–40�.

6 Conclusions
In this paper, a new optimally WRM filter for denoising health

signals is proposed. Test signals for abrupt and gradual faults are
used for a gas turbine engine diagnostic problem, along with a
transient signal. The WRM filter is developed and the weights are
optimized for typical health monitoring signals by minimizing the
error norms between the noisy and root signal. The WRM filter
provides better denoising results compared with the simple me-
dian filter and recursive median filter. The WRM filter also im-
proves the visual quality of the signals by removing the noise and
outliers while preserving important features of the root signal such
as sharp edges and gradual shifts. The WRM filter is presented as
a preprocessor for denoising health signals prior to fault detection
and isolation in jet engines.

Table 8 Percentage noise reduction provided by different fil-
ters for noisy test signal contaminated with outliers

Signal type SNR value
��median�

�%�
��RMF�

�%�
��weighted RMF�

�%�

Step 0.1 51.84 60.07 67.35
0.3 51.90 59.96 67.70
1.5 53.17 60.70 68.00

Ramp 0.1 57.16 57.93 64.99
0.3 57.39 57.92 65.24
1.5 58.24 59.27 65.77

Combination 0.1 62.85 63.30 68.58
0.3 62.92 63.56 68.85
1.5 64.83 65.57 70.06

Real signal 0.1 46.16 56.08 65.72
0.3 46.14 55.97 65.38
1.5 46.16 55.75 64.89

Table 9 Improvement in performance of weighted RM filters
over other filters for noisy test signals contaminated with
outliers

Signal type SNR value
��SM�

�%�
��RMF�

�%�

Step 0.1 32.30 18.22
0.3 32.86 19.35
1.5 31.67 18.57

Ramp 0.1 18.28 16.78
0.3 18.42 17.39
1.5 18.04 15.96

Combination 0.1 15.42 14.38
0.3 15.98 14.51
1.5 14.86 13.04

Real signal 0.1 36.34 21.96
0.3 35.82 21.37
1.5 34.79 20.66
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Downlo
omenclature
k � discrete time

M � number of points in sample
N � number of noisy samples of data, length of

filter
N1 � low rotor speed
N2 � high rotor speed

w � integer median filter weights
x � input to filter
y � output of the filter

z0 � ideal measurement delta
z � noisy measurement deltas
ẑ � filtered measurement delta

� � change from baseline good engine
� � noise

� � mathematical representation of filter
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